a2 United States Patent
Roth et al.

US009471533B1

10) Patent No.: US 9,471,533 B1
45) Date of Patent: Oct. 18, 2016

(54) DEFENSES AGAINST USE OF TAINTED
CACHE

(71) Applicant: Amazon Technologies, Inc., Reno, NV
(US)

(72) Inventors: Gregory Branchek Roth, Seattle, WA
(US); Nicholas Howard Brown,
Seattle, WA (US)

(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 521 days.

(21) Appl. No.: 13/787,568

(22) Filed: Mar. 6, 2013

(51) Int. CL
GOGF 15/167 (2006.01)
GOGF 17/30 (2006.01)
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)
(52) US.CL

CPC ... GO6F 15/167 (2013.01); GOGF 17/30902
(2013.01); HO4L 63/10 (2013.01); HO4L
67/2852 (2013.01)
(58) Field of Classification Search
CPC ..o GOG6F 17/3089; GOG6F 17/30902;
GOG6F 17/30132; GO6F 12/0815; GO6F
12/0862; GOGF 19/3418; HO4L 67/2852;
HO4L 12/18; HO4L 12/6418; HO4L 63/126;
HO04L 63/0807;, HO4L 63/1466; HO4L
61/1511; HO4L 67/42
USPC ittt 709/213
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,256,747 Bl 7/2001 Inhohara et al.
6,418,544 Bl 7/2002 Nesbitt et al.

Caching Context

Cache Validator
(102)

Client Device
(100)

Connection
Context (108)

6,553,409 Bl 4/2003 Zhang et al.
8,078,759 B2 12/2011 Seifert et al.

8,584,234 B1* 11/2013 Sobelccccoeven HO4L 29/06

726/22

8,639,770 B1* 12014 Raley etal. 709/216

2003/0177353 Al* 9/2003 Hiltgen .. 713/161
2005/0138176 Al 6/2005 Singh et al.

2005/0240940 Al* 10/2005 Quinet et al. 719/315

2006/0005016 Al* 1/2006 Leecccovvviinn. GOG6F 8/63

713/164

2006/0101273 Al* 52006 Tan HO4L 63/0414

713/182

2006/0233166 Al* 10/2006 Bou-Diab HO4L 63/08

370/389

2007/0106748 Al* 5/2007 Jakobsson et al. 709/217

2008/0229025 Al* 9/2008 Plamondon 711/126

2009/0064299 Al* 3/2009 Begorre et al. 726/7

2010/0057995 Al 3/2010 Cao et al.
2010/0145161 Al 6/2010 Niyato et al.

(Continued)

OTHER PUBLICATIONS

Fielding et al.; “Hypertext Transfer Protocol—HTTP/1.1”; RFC
2616; The Internet Society; Jun. 1999; 529 pages.

(Continued)

Primary Examiner — Larry Donaghue
(74) Attorney, Agent, or Firm — Baker & Hostetler LLP

(57) ABSTRACT

Systems, methods, and computer readable media are
described for validating objects stored in a web cache. In one
embodiment, a computing device caches objects received
while accessing networked content over a network. The
computing device generates a description of conditions
associated with the caching of the objects. When the com-
puting device accesses networked content via a second
network, the computing device or a remote server connected
thereto utilizes the description to determine whether an
object in the cache is trusted or untrusted. The server
manages a policy that defines rules for making the determi-
nation. The policy can be generated based on descriptions
received from a plurality of devices.

28 Claims, 12 Drawing Sheets

Unauthorized Tainted Web
Device (130) Cache (132)

@ First Website
(124)

Server (120)
Ay

EI

©=]

b~ ;
Second
Server (150} Website
(154)
<&

Administrator popo ey
Device (160}

US 9,471,533 B1

Page 2
(56) References Cited 2014/0189074 Al* 7/2014 Parker HO04L 63/20
709/220
U.S. PATENT DOCUMENTS 2015/0046507 Al* 22015 Saxena ... HO4L 63/20
709/201
2010/0325357 Al* 12/2010 Reddyccccoveeeen GO6F 21/53
711/118 OTHER PUBLICATIONS
2012/0023588 Al™* 1/2012 Su .cccovvvvvvivecnnne HOA4L 63/0236
726/26 U.S. Appl. No. 13/787,553, filed Mar. 6, 2013, Roth et al.
2012/0317235 Al 12/2012 Nguyen et al. U.S. Appl. No. 13/787,576, filed Mar. 6, 2013, Roth et al.
2013/0054671 ALl* 2/2013 Maki «ccoovvvvveveiaenne 709/202

2014/0006538 Al 1/2014 Oikonomou * cited by examiner

US 9,471,533 B1

Sheet 1 of 12

Oct. 18, 2016

U.S. Patent

T 'Sl

(¥ST)
Q}ISGa M
puooas

{¥9T1) Adtjod

(0ST) Jonias

(ver)
SUSYIM 15414

(0zT) 490385

=@

(zeT) ayoen
09/ pajuie|

o

(09T1) 21890
Jojenysiviwpy

(0€T) @2188¢@
pazuoyineun

JJOMISN 35414

_— — —

1) JoAe1 Alunoss

(80T) 1x=3U0D
uonoauuo)

{90T)
IXa3u0) uiyoe)

(ooT)
201MaQ WRIPD

N’ =06

(vot)
ayoed gsMm

(e0T)
JojepljeA ayodedn

U.S. Patent

Oct. 18, 2016

Establish connection to a first
network (202)

Access a website over the first
network (204)

v

Cache objects from the website
(206)

v

Generate first metadata describing
the conditions under which the
objects were cached (208)

v

Establish a connection to a second
network (210)

Sheet 2 of 12

US 9,471,533 B1

\ 4

v

Generate second metadata
describing the connection to the
second network (212A)

Is the first
metadata compatible
with second metadata?
(214A)

No

server (212B)

Transmit the first metadata to a policy

A

Receive an
assessment
associated with the
cached objects from
the policy server
(214B)

Receive a policy for
using the cached

second network from
the policy server

objects over the

(214C)

assessment authorize
the use of the cached
objects?
(216A)

No

metadata compatible

Is the first

with the policy?
(216B)

v
Determine that the
cached objects are
trusted for
interactions over
the second network
(218A)

3
Determine that
the cached
objects are
untrusted (218B)

FIG. 2

US 9,471,533 B1

Sheet 3 of 12

Oct. 18, 2016

U.S. Patent

(8£€)
ayoe) paishil

(D0os€)
I3 I95N

\\\\/1

(00€g) @4n1onnseuju| padeuewy

{og€)
SMSOaM
|euJa3ju|

(99s¢)
IXIU0D

=
——

(a¥s€) ayoey Jasn

(0€€) Januas

@

pageuen

(g0s¢€)
30IA3Q J3SN

<

SN

A

(ozg)
JlomiaN padeuen

(vosg)
PB1IU0D)

(vos€)
— Q21A2(J 135N

m@\%m@

Ela— A-t@

(VPSE) ayoed Jasn

(otT€) 9213

(ovg)
a1sgeM

—Q

EE%&W
Q
A

(81¢) Adllod
S$S20J0Y MJOMISN

U.S. Patent

Oct. 18, 2016 Sheet 4 of 12

Establish a managed infrastructure
comprising a managed network (402)

y

Generate a policy for accessing network
resources internal and external to the
managed infrastructure (404)

Is policy
shared with a

US 9,471,533 B1

Yes:

computing
device?
(406A)

No
Y

Receive information from the computing
device, the information being associated
with objects cached over a network
external to the managed infrastructure
(406C)

y

Compare the received information to
the policy (408)

Is received
information
compatible with the
policy?
Ves (410)

l I

Push the policy to
computing devices
accessing the
managed network
(406B)

Authorize the computing device
to use the cached objects for
interacting with network
resources accessed through the

managed network (412A)

Deny authorization
to execute the
cached objects

(4128B)

v

Update the
policy (414)

FIG.

4

US 9,471,533 B1

Sheet 5 of 12

Oct. 18, 2016

U.S. Patent

S 'Ol

(902S) 19A19S I
(dzzs) ausqam

@

EIDAOIT

(¥€S) ayoed

(8eS) Mdijod gam paishul

olEe

(Dzz8) =usgom

(D0zS) 1an1as gam

@

A

=@

(VZZS) dusaam

(Y0ZS) 19nIas qam

(0g9)

JanIas paisni]

(VOTS) YJomiaN

(90T4) HoMmISN

(00S)
92IA3Q JasSN

—Q

(905) xawo0d (10S) ayded

U.S. Patent Oct. 18, 2016 Sheet 6 of 12 US 9,471,533 Bl

Receive a policy (602)

Detect a network condition
(604)

|

Compare the condition to
the policy (606)

l

Cache objects from
network-based sources
when the condition meets
the policy (608)

FIG. 6

U.S. Patent Oct. 18, 2016 Sheet 7 of 12 US 9,471,533 Bl

Cache objects accessed over
a first network (702)

Detect a transmission
condition (704)

y

Transmit information
associated with the cached
objects to a trusted server

(706)

v , v

Transmit the cached
Receive a policy (708B) objects to the trusted
server (708C)

Receive a validation of the
cached objects (708A)

y y A

Replace untrusted cached
objects with trusted Validate the cached Receive trusted objects
objects based on the objects (710B) (710C)

validation (710A)

FIG. 7

U.S. Patent

Oct. 18, 2016

Sheet 8 of 12

Manage a policy for
validating cached objects

(802)

A 4

Associate the policy with a
device (804)

l

Detect a network
parameter (806)

I

Receive information about
cached objects collected
over time from the device
(808)

A 4

Return a service to the
device (810)

FIG. 8

A

Associate the policy with a
network (812)

y

Push the policy to a device
accessing the network (814)

y

Enforce the policy against
cached objects used by the
device to interact with a
network-based source
accessed over the network
(816)

US 9,471,533 B1

US 9,471,533 B1

Sheet 9 of 12

Oct. 18, 2016

U.S. Patent

(ze6) 311sgam

(0€6) Jonias

@

A

6 'Old

ayoe) Ui s303[qO a1epljeA

-+

(026) Y1omiaN puodas

(0T6) 3JOMISN 35414

5$123[gO ayoed

(006)
1A W31

>
Q

U.S. Patent

Oct. 18, 2016 Sheet 10 of 12

Cache objects from a
plurality of network-based
sources (1002)

A 4

Generate a summary of
objects in the cache (1004)

A

Determine objects that
require validation (1006)

:

Determine whether
validation service rules are
met (1008)

:

Validate the determined
objects (1010)

FIG. 10

US 9,471,533 B1

US 9,471,533 B1

Sheet 11 of 12

Oct. 18, 2016

U.S. Patent

T 'Old

Janas Alelpawiaul

(0€6) Jonuas

(09TT) >40MIBN PAIYL

(ze6) ausgam

ayoe) uj spa(qQ areplep

(osTT)

301AI3S UoIIepl|eA 2A1929Y

(0Z6) JJOMIDN puU0OIIS J—

(0T6) Y4omi1aN 15414

ayoe) ul s19(q0
JO uonepijeA 3sanbay

(006)
CRITET RUET]o)

U.S. Patent

Oct. 18, 2016

Cache on a server content
from a plurality of network-
based sources (1202)

A

Validate objects associated
with the cache on behalf of
a client device based on
validation service rules
(1204)

A

Sheet 12 of 12

Update the cache with the
validated objects (1206)

.

Return a validation service
to the client device based
on the validated objects

(1208)

FIG. 12

US 9,471,533 B1

US 9,471,533 Bl

1
DEFENSES AGAINST USE OF TAINTED
CACHE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related by subject matter to that which
is disclosed in the following commonly assigned applica-
tion: U.S. patent application Ser. No. 13/787,553 filed Mar.
6, 2013, entitled “SERVER DEFENSES AGAINST USE
OF TAINTED CACHE,” and U.S. patent application Ser.
No. 13/787,576 filed Mar. 6, 2013, entitled “CACHE VALI-
DATION AS A SERVICE”. The entirety of each application
is hereby incorporated by reference herein.

BACKGROUND

Web caching is a commonly used technique implemented
in web browsing. The technique involves a client temporar-
ily storing objects downloaded from a server for later
retrieval. The technique may also involve a proxy located
between the client and the server and configured to tempo-
rarily store the downloaded objects. Web caching typically
improves the quality of services associated with the delivery
of objects to the client. The improvements include reduced
bandwidth consumption, reduced server load, and reduced
latency.

Web caching, however, does not typically prevent an
unauthorized entity from serving tainted objects. For
example, the unauthorized entity may be positioned to
intercept and modify network traffic within a computing
environment. In such situations, the unauthorized entity can
serve the tainted objects that the client or the proxy caches.
When the tainted objects are later retrieved and executed
within the same or a different computing environment, the
unauthorized entity can overcome security settings associ-
ated with the computing environment.

BRIEF DESCRIPTION OF DRAWINGS

Throughout the drawings, reference numbers may be
re-used to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
embodiments described herein and are not intended to limit
the scope of the disclosure.

FIG. 1 illustrates a system for providing verification of
cached objects.

FIG. 2 is a flowchart depicting an example procedure for
providing verification of cached objects.

FIG. 3 illustrates a system for providing server-based
verification of cached objects.

FIG. 4 is a flowchart depicting an example procedure for
providing server-based verification of cached objects.

FIG. 5 illustrates a system for providing verification of
cached objects as a service.

FIG. 6 is a flowchart depicting an example procedure for
verifying objects before caching it as a service.

FIG. 7 is a flowchart depicting an example procedure for
verifying cached objects as a service.

FIG. 8 is a flowchart depicting another example procedure
for verifying cached objects as a service.

FIG. 9 illustrates a system for providing device-based
validation of cached objects as a service.

FIG. 10 is a flowchart depicting another example proce-
dure for providing device-based validation of cached objects
as a service.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 illustrates a system for providing server-based
validation of cached objects as a service.

FIG. 12 is a flowchart depicting another example proce-
dure for providing server-based validation of cached objects
as a service.

DETAILED DESCRIPTION

The following detailed description is directed to technolo-
gies for validating cached objects. Generally, cached objects
can be validated against parameters that are defined by the
objects’ author and embedded within the cached objects.
The cached objects can also be validated against parameters
that are defined by a client device that caches the objects.
The client-defined parameters can be embedded within the
cached objects or can be stored as a file associated with the
cached objects and can describe a context associated with
the caching. The description includes any of, for instance,
information about a server from which the objects were
downloaded, information about a network over which the
objects were downloaded, and information about the client
device.

To validate the cached objects, a policy may be employed.
A policy server may collect parameters associated with the
cached objects from a plurality of client devices to generate
the policy. The validation of the cached objects may be
executed against the policy locally on the client device or
remotely on the policy server, or may be distributed between
the client device and the policy server. For example, the
policy server can push the policy to the client device, can
provide the policy upon request to the client device, or can
validate the cached objects of the client device.

The validation can be optimized to minimize costs asso-
ciated with available resources and infrastructure. Such
costs include, for instance, network bandwidth and resource
loads. By way of example, when the client device detects a
type of network that communicatively couples the client
device and the policy server, the client device transmits
information associated with its cached objects to the policy
server and, in response, receives a validation service from
the policy server.

To better understand various embodiments of the present
disclosure, relevant aspects of caching are described herein
below. Caching is a technique for the temporary storage of
objects such as content, documents, pages, images, multi-
media, video, audio, HTML files, cascading style sheets,
libraries, plug-ins, JavaScript scripts, or other files down-
loaded when a network-based resource is visited. The
objects can be used to satisty subsequent requests to access
the same or a different network-based resource.

Caching techniques can be used by various systems
including a browser of a computing device, a proxy server,
a content delivery network (CDN), or a search engine. For
example, the browser can store objects downloaded from a
visited network-based resource, such as a web-based
resource or a web site, in a cache of the computing device.
When the browser revisits the same or a different web site,
the browser may determine whether the objects in the cache
are valid or invalid. The valid objects may be reused. On the
other hand, the invalid objects are not used until they are
refreshed.

In the case of caching by a proxy server, the proxy server
caches the objects on behalf of the computing device. For
example, the proxy server can be located between the
computing device and the network-based resource, typically
near a network gateway. When the computing device

US 9,471,533 Bl

3

requests the objects from the network-based resource, the
proxy server delivers the objects from its cache to the
computing device.

In a CDN architecture, the objects are stored in cache at
multiple datacenters. When the computing device connects
to a datacenter to access content, objects associated with the
content are served from the cache of the datacenter.

Web crawling by a search engine can also be thought of
as a caching technique. In this technique, the search engine
methodically browses websites to cache objects. The search
engine can satisfy the computing device’s request for objects
of a particular website from the cache.

Other caching techniques may also be implemented and
may include forward caching and reverse caching. In for-
ward caching, frequently accessed objects are stored on a
local network for retrieval by computing devices internal to
the local network without visiting an external network. As
such, forward caching reduces bandwidth consumption on
the external network and accelerates access of the comput-
ing devices to the objects. In reverse caching, frequently
accessed objects on the local network are cached at the local
network’s edge for consumption by computing devices on
the external network. As such, reverse caching reduces
network bandwidth consumption on the local network and
accelerates access of the external computing devices to the
objects.

To further improve the efficiency of accessing and retriev-
ing cached objects, the caching techniques may be imple-
mented across multiple servers configured to store the
cached objects. For example, the cached objects can be
distributed across a plurality of servers located throughout a
network. In another example, the servers can be located at
different nodes of the network in a hierarchical fashion. The
cached objects are first served from a node at a lower level
in the hierarchy. If the cached objects are unavailable from
the node in the lower level of the hierarchy, the cached
objects are served from a node at a higher level in the
hierarchy.

When multiple servers are used as described above,
various protocols can be implemented in order to retrieve the
cached objects from one of the servers before resorting to an
external network if the cached objects are not found. These
protocols allow the servers to communicate in order to
locate the cached objects and include cache array routing
protocol (CARP), Internet cache protocol (ICP), hypertext
caching protocol (HTCP), web cache coordination protocol
(WCCP), and cache digests.

As described above, the cached objects can comprise
content, documents, pages, images, multimedia files, video
files, audio files, libraries, plug-ins, scripts, and the like and
can be used to interact with network-based resources, such
as web sites, servers that host network-based applications,
and the like. These objects commonly comprise software
code or scripts such as hypertext markup language (HTML),
JavaScript, cascading style sheets (CSS), and document-
object model (DOM) files.

HTML is the main markup language for displaying web
pages and other information in a browser. It allows objects
to be embedded within a web page and can be used to
generate interactive forms. Scripts in non-HTML languages,
such as JavaScript, can also be embedded in HTML. Further,
HTML enables structured documents by denoting structural
semantics for text such as headings, paragraphs, lists, links,
quotes and other items.

JavaScript is a scripting language that adds interactivity to
HTML pages by inserting scripts into HTML pages for
execution by the browser. JavaScript commonly employs

10

15

20

25

30

35

40

45

50

55

60

65

4

jQuery which is a multi-browser JavaScript library that
simplifies the scripting of HTML. JQuery’s syntax allows
designs of dynamic web pages and applications by simpli-
fying rules that are executed to navigate a document, select
DOM elements, create animations, handle events, develop
applications, and create plug-ins. These plug-ins comprise
any of, for example, Ajax helpers, webservices, datagrids,
dynamic lists, XML and XSLT tools, drag and drop, events,
cookie handling, and modal windows.

Cascading Style Sheets (CSS) is a style sheet language
used for describing the appearance and layout of a document
written in a markup language, such as HTML, XML,
XHTML, and the like. CSS separates document content,
typically written in the markup language, from document
presentation that includes elements such as layout, colors,
and fonts. This separation enables multiple pages to share
formatting and a same page to be displayed in different
formats.

The Document Object Model (DOM) is an application
programming interface (API) for HTML XML, and
XHTML data and documents. It defines the logical structure
and the methods for accessing and manipulating the docu-
ments. DOM allows documents to be navigated and ele-
ments therein to be edited, deleted, or added.

When a cached object is retrieved, it is typically validated
prior to being reused according to various validation tech-
niques. These techniques mostly rely on attributes that are
associated with the object prior to its caching and that are
defined by an author of the object or by a network-based
source from which the object is cached. For example, a
designer of a web page from which the object is cached can
insert a set of attributes in HTML tags of the web page,
whereas the web page can apply protocols, such as hypertext
transfer protocol (HTTP) 1.0 and 1.1, to define another set
of attributes.

The attributes can comprise freshness and control rules
that define when the cached object is valid and when it needs
to be revalidated. The revalidation may comprise a browser
fetching a new copy of the object or checking with a server
to determine whether the cached version of the object is still
authorized. The freshness attributes define a period of time
in which the cached object can be used. If the period expires,
the cached object becomes stale and must be revalidated.
These attributes can be defined in, for example, an HTTP
Expires or Last-Modified header. On the other hand, the
control attributes include directives to declare what objects
in a document are cacheable, modifications of the expiration
mechanism, and revalidation and reload controls and can be
defined in, for instance, an HTTP Cache-Control header. For
example, a server can generate an entity tag (ETag) that
uniquely identifies an object and can update the ETag every
time the object is modified. In this way, a computing device
may determine when an object in its cache is valid based on
whether the cached object is associated with the most
up-to-date ETag.

The above validation techniques may be insufficient in
certain situations. For example, if an unauthorized third
party is capable of intercepting communications between a
client device and a server, the unauthorized third party may
re-route requests of the client device to another computing
device or modify responses from the server. In this case, the
unauthorized third party may serve tainted objects to the
client device, which, in turn, may cache the tainted objects
in its local cache. The tainted objects may otherwise have
proper validation attributes that are defined by the original
author of the objects or by the unauthorized third party.
Because the validation is executed against these attributes,

US 9,471,533 Bl

5

the client device would unknowingly determine that the
tainted objects in its cache are valid for reuse.

For example, the tainted objects may have a malicious
script that inserts an advertisement when executed. The
freshness attributes of the tainted objects may have an
extended expiration date, e.g., a week from the time of
caching the tainted objects. When the client device attempts
to visit a web page within the extended time period, the
tainted objects are determined to be valid and may be used
to interact with the web page. Thus, the client device
executes the malicious script and causes the advertisement
to be displayed within the web page. This problem of not
checking for potentially tainted objects is exacerbated when
the client device moves between an insecure and secure
network as described herein below.

Various aspects of the disclosure are described herein with
regard to certain examples and embodiments, which are
intended to illustrate but not to limit the disclosure. It should
be appreciated that the subject matter presented herein may
be implemented as a computer process, a computer-con-
trolled apparatus, a computing system, or an article of
manufacture, such as a computer-readable storage medium.
While the subject matter described herein is presented in the
general context of program modules that execute on one or
more computing devices, those skilled in the art will rec-
ognize that other implementations may be performed in
combination with other types of program modules. Gener-
ally, program modules include routines, programs, compo-
nents, data structures, and other types of structures that
perform particular tasks or implement particular abstract
data types.

Those skilled in the art will also appreciate that the subject
matter described herein may be practiced on or in conjunc-
tion with other computer system configurations beyond
those described herein, including multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, minicomputers, mainframe computers, handheld com-
puters, personal digital assistants, e-readers, cellular tele-
phone devices, special-purposed hardware devices, network
appliances and the like. The embodiments described herein
may also be practiced in distributed computing environ-
ments, where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed computing environment, program modules
may be located in both local and remote memory storage
devices.

A computing node, such as a user node, a client node, an
administrator node or a server node, may be implemented on
a wide variety of computing environments, such as com-
modity-hardware computers, virtual machines, computing
clusters and computing appliances. Any of these computing
devices or environments may, for convenience, be described
as computing nodes. Similarly, for convenience, a comput-
ing node may be referred to as a computing device or an
electronic device.

FIG. 1 illustrates one example embodiment of a system
for providing verification of cached objects to minimize
risks associated with using tainted objects from cache.
Although the techniques are illustrated using a client-server
architecture, similar techniques apply to a cache server
architecture. For example, the illustrated system may imple-
ment browser, proxy, or CDN caching as described above.
Likewise, although the techniques are illustrated using
objects cached from websites, the techniques also apply to
objects cached from any other network-based resource, such
as objects associated with web-based games, objects asso-

15

25

35

40

45

50

55

6

ciated with applications that access application program-
ming interfaces (APIs) exposed by servers, and the like.

In a basic configuration, the system of FIG. 1 comprises
a client device 100 that may connect to a first network 110
and then later connect to a second network 140. For
example, first network 110 may be a network operated by a
business, such as a coffee shop that offers network connec-
tivity and second network 140 may be a private network,
such as a corporate network. The system also comprises an
administrator device 160 that may be configured to manage
access of client device 100 to second network 140 and an
unauthorized device 130 that may be positioned to intercept
data exchange between client device 100 and a server 120
over first network 110.

Devices 100, 130 and 160 may comprise a desktop
computer, a laptop computer, an electronic device, a smart-
phone, a tablet or any other general or specialized device
capable of interacting with servers 120 and 150 over net-
works 110 and 140. Client device 100 may be associated
with an authorized user and may cache objects accessed at
servers 120 and 150, such as objects of a first website 124
hosted on server 120 and objects of a second website 154
hosted on server 150. Likewise, administrator device 160
may enable an administrator to manage the use of the cached
objects by the authorized user over second network 140.
Unauthorized device 130 may allow a hacker to inject
tainted objects into objects cached by client device 100 over
first network 110.

Servers 120 and 150 may comprise any devices suitable
for interacting with devices 100, 130 and 160 over networks
110 and 140 and may be configured to provide web-based
services such as hosting websites 124 and 154. For example,
servers 120 and 150 may be components within a web server
or components within a datacenter. In another example,
servers 120 and 150 may also be the same computing device.
Similarly, websites 124 and 154 may be the same website or
maybe two distinct websites.

Networks 110 and 140 may comprise any type of com-
munications networks that are suitable for providing com-
munications and transmitting data between devices 100, 130
and 160 and servers 120 and 150, and may comprise a
combination of discrete networks, which may use different
technologies. For example, networks 110 and 140 may
comprise a cellular network, a WiFi/broadband network, a
local area network (LAN), a wide area network (WAN), a
telephony network, a fiber-optic network or combinations
thereof. In an example embodiment, the WiFi/broadband
network may be adapted to communicate with the Internet.

Networks 110 and 140 may also be associated with
security layers 112 and 142, respectively. These security
layers may differ from one another and may define param-
eters or levels for enabling access of client device 100 to
networks 110 and 140. For example, first network 110 may
be an insecure network or a public network accessible to all
users with minimum or no authentication. By comparison,
second network 140 may be a secure network or a private
network that has various security safeguards that are defined
in security layer 142 and that authenticate the authorized
user. The safeguards may include, for example, firewalls,
encryption, authentication, credentials, communication pro-
tocols, filters, and the like. A virtual private network may be
used to extend a private network’s operation over a public
network. Determining whether a network is secure or inse-
cure may be based on various parameters that may include,
for example, information about the network’s security layer,
whether it is a private or public network, and an identifier

US 9,471,533 Bl

7

that may associate the network with a whitelist or blacklist
managed by administrator device 160.

The authorized user may operate a browser on client
device 100 to interact with first website 124 over first
network 110. The browser caches objects of first website 124
in a cache of client device 100, shown as web cache 104 in
FIG. 1. The cached objects in web cache 104 may have
attributes that are defined by server 120 or by an author of
first website 124 and that may be configured to allow the
browser to validate the cached objects during a subsequent
use.

At a later time, the authorized user may direct client
device 100 to connect to second network 140. The connec-
tion may involve authenticating the authorized user based on
security layer 142. When the authorized user directs the
client device 100 to connect to second website 154 over
second network 140, second website 154 may use the
objects that were cached in associated with first website 124.
As such, instead of downloading the objects, the browser
may fetch and validate them from web cache 104. If the
browser determines that the objects are valid, the browser
may use the objects to access second website 154. If the
browser determines that the objects are invalid, the browser
refreshes web cache 104 by replacing the invalid objects
with objects from second website 154.

As noted above, a malicious or undesired program may
have been installed on a network device in first network 110
that causes the network device to intercept communications
between client device 100 and server 120 and route the
requests to unauthorized device 130 or cause the network
device to respond to client device 100 as if it was server 120.
After the communications are intercepted, the network
device or unauthorized device 130 may serve tainted objects
to client device 100 that are then cached in web cache 104.
For example, when the browser of client device 100 attempts
to connect to first website 124 over first network 110,
unauthorized device 130 may spoof the browser by provid-
ing objects from an alternate website that appears to come
from first website 124. As such, the browser may accept and
store in web cache 104 tainted objects that may include
malicious code. At a later time, when the browser connects
over second network 140 to the same or another website,
such as second website 154, the browser may fetch the
tainted objects from web cache 104 and may unsuspectingly
execute the malicious code.

To improve browser security, additional data may be
associated with the cached objects in web cache 104 and
used to verify whether the cached objects are trusted. For
example, even when client device 100 validates the cached
objects based on their freshness attributes, client device 100
may further verify the cached objects based on the additional
data. If the verification indicates that the cached objects are
trusted, client device 100 may allow their use. On the other
hand, if the verification indicates that the cached objects are
untrusted, client device 100 may disable their use and may
attempt to refresh them. The additional data associated with
the cached objects may be generated by a cache validator
102 operating on client device 100.

Cache validator 102 may be integrated with the browser
or with an application other than the browser, or may be a
standalone application, and may be configured to verity
cached objects in web cache 104 as described herein below.
In an example, cache validator 102 may include scripts
stored in an HTTP client library, or may be provided within
an application software development kit (SDK). Although
the following paragraphs describe that cache validator 102
verifies the cached objects upon detecting that the browser

25

30

40

45

55

8

is requesting to reuse these object objects, this verification
can occur when client device 100 boots up, based on a
predefined rule, or upon detection of a network condition.

In one example, cache validator 102 may associate veri-
fication information with the cached objects of web cache
104. The verification information may be in the form of
metadata that describes conditions in which the objects were
retrieved and cached. The metadata may be stored as a
caching context 106 in web cache 104 or, alternatively, in a
metadata file associated with web cache 104. For instance,
the metadata file may be located in the same or a different
local folder that stores web cache 104 on client device 100.
Cache validator 102 can also facilitate edits to the metadata
by, for example, enabling the authorized user to retrieve and
annotate caching context 106 with additional verification
information.

As used herein, caching context 106 generally includes a
description of a context in which the objects were stored in
a cache such as web cache 104. More particularly, caching
context 106 may include a variety of information about first
website 124, server 120, first network 110, the authorized
user, client device 100, the connection between these dif-
ferent devices and the like. For example, an address, such as
a uniform resource locator (URL) of first website 124, an
internet protocol (IP) address of server 120, or a media
access control (MAC) address of server 120, and a descrip-
tion of a digital certificate associated with first website 124
or server 120 may be included in caching context 106.

The information about first network 110 may contain an
identifier of first network 110, a description about security
layer 112, data about an entity or an administrator of first
network 110, a geographic location of first network 110 and
the like. For example, the identifier may be a service set
identifier (SSID), an IP address, or a MAC address of a
wireless access point associated with first network 110. The
description of security layer 112 may indicate whether first
network 110 is a public or private network and information
about the type of authentication used by first network 110.
When first network 110 is associated with an entity, such as
a store or a company, an identification of the entity and its
geographic location can be included in caching context 106.

Caching context 106 may also include an identifier of
client device 100 such as its IP or MAC address, a descrip-
tion of an operating system of client device 100, and
information about the browser. Likewise, the authorized user
may be described in caching context 106 by using his or her
user name, privileges and function. For example, caching
context 106 may indicate whether the authorized user is an
administrator of first network 110.

The information about the connection between the various
devices captured in caching context 106 may include a trace
route of the network connection between client device 100
and website 124, a latency or response time associated with
computing device 100°s access to website 124, and infor-
mation about nodes or gateways between client device 100
and server 120. Also, caching context 106 may include a
timestamp identifying the time when a particular object in
web cache 104 were downloaded and a geographic location
of client device 100 at that time.

When the authorized user directs client device 100 to
connect to second network 140 and causes the browser to
access network-based resources via second network 140, the
browser may attempt to reuse previously cached objects
from web cache 104. In this case, cache validator 102 can
verify whether the cached objects may be trusted or
untrusted based on caching context 106. For example, cache
validator 102 may compare the current network conditions

US 9,471,533 Bl

9

to the attributes stored in caching context 106. The current
conditions may be stored as a connection context 108 that
may include similar attributes to those stored in caching
context 106. For example, when the browser connects to
second website 154, connection context 108 may include
information about second website 154, server 150, second
network 140, client device 100, the authorized user, and
information about the connection between these modules.
As used herein, connection context 108 generally includes a
description of a context in which cached objects from web
cache 104 will be reused by client device 100. Connection
context 108 can, but need not, be saved on client device 100.
Cache validator 102 may have a policy, e.g., a set of rules,
that defines when the cached objects in web cache 104
should be considered trusted based on a comparison of
caching and connection contexts 106 and 108. For example,
the policy may define a minimum set of information that
need to match between the two contexts. In one example,
cache validator 102 can compare requirements of security
layer 142 to requirements of security layer 112 as described
in caching context 106 and connection context 108, respec-
tively. If cache validator 102 determines that first network
110 is more secure than second network 140 (e.g., an
identifier for first network 110 is stored on a whitelist
whereas an identifier for second network 140 is not), cache
validator 102 may declare cached objects in web cache 104
that were obtained while connected to first network 110 as
trusted and enable the browser to reuse these cached objects
over second network 140. In another example, cache vali-
dator 102 may determine that the authorized user was acting
in an administrator function when objects were cached in
web cache 104 and is currently acting as a user with limited
privileges on second network 140. In such an example, the
application may determine that these cached objects in web
cache 104 are trusted and again enable the browser to reuse
them on second network 140. These various examples are
merely illustrative and other implementations may be uti-
lized based on the information that is included in caching
context 106 and that is available to cache validator 102 when
client device 100 is connected to second network 140.
Various actions may be performed by cache validator 102
or client device 100 when the cached objects in web cache
104 are determined to be untrusted. For example, cache
validator 102 may fetch new versions of the cached objects
while connected to second network 140 or may purge web
cache 104 all together and download new objects from
second website 154 over second network 140. Also, cache
validator 102 may also display a warning to the authorized
user describing a risk associated with the untrusted objects.
Administrator device 160 may also be configured to assist
cache validator 102 in verifying whether the cached objects
in web cache 104 are trusted. For example, administrator
device 160 may comprise a policy 164 for verifying objects
based on context information. As such, administrator device
160 may receive caching context 106 from client device 100,
may receive or derive connection context 108, and may
compare caching and connection contexts 106 and 108 to
determine whether policy 164 is met. If the policy is met,
administrator device 160 may return an indication that the
cached objects in web cache 104 are trusted. Otherwise,
administrator device 160 may return an indication that they
are untrusted. If untrusted, administrator device 160 may
also instruct client device 100 to refresh the cached objects
in web cache 104, may transmit new objects to client device
100 with instructions to purge and replace corresponding

10

15

20

25

30

35

40

45

50

55

60

65

10

cached objects in web cache 104, or may direct client device
100 to a trusted server from which new objects may be
retrieved.

FIG. 2 is a flowchart depicting an example embodiment of
a procedure for providing verification of cached objects.
Operations 202-218 may be implemented on client device
100 of FIG. 1. Operation 202 illustrates client device 100
connecting to first network 110. Operation 204 illustrates
client device 100 operating the browser to access first
website 124 over first network 110. Operation 206 illustrates
client device 100 caching objects from one or more websites
in conjunction with accessing first website 124.

Operation 208 illustrates client device 100 generating and
storing a context that includes information describing con-
ditions under which the objects were cached. For example,
the information could indicate a network identifier for the
first network 110, a timestamp, etc. Operation 210 illustrates
client device 100 connecting to second network 140 that
may be associated with a rule. The rule may require client
device 100 to automatically verify objects in its web cache
when the connection is established or to periodically per-
form such verification. Operation 210 may be followed by
operation 212A or operation 212B (described in more detail
below) depending on whether the verification is performed
locally on the client device 100 or is distributed between
client device 100 and a policy server associated with second
network 140.

When the verification is performed locally on client
device 100, Operation 212A illustrates client device 100
generating a context associated with the connection to
second network 140. For example, the context can include
an identifier for the second network 140, a timestamp
indicating when the connection to the second network 140
was made, etc. Following Operation 212A, operation 214A
illustrates client device 100 comparing the stored context to
this generated context. Client device 100 may determine that
the two contexts are compatible based on a policy. Such a
policy can be embedded within cache validator 102, stored
locally at client device 100, or retrieved from the policy
server. Operation 214A may be followed by operation 218A
when the contexts are compatible. Otherwise operation
214A may be followed by operation 218B.

Operation 218A illustrates client device 100 determining
that the cached objects, e.g., objects within the cache that
were obtained via the first network 110, are trusted and may
be used over second network 140. Client device 100 may
further validate the cached objects based on attributes
embedded therein by an author of the objects. Operation
218B illustrates client device 100 determining that the
cached objects are untrusted.

When the verification is distributed between client device
100 and the policy server, Operation 212B illustrates client
device 100 transmitting the generated context to the policy
server. The policy server may store a policy that defines
requirements for determining whether cached objects are
trusted or not. In one example, the policy server compares
the received context to the policy and returns an assessment
to client device 100. In such a situation, operation 212B may
be followed by operation 214B. In another example, the
policy server may return the policy or relevant sections of
the policy to client device 100 based on the received context.
In such a situation, operation 212B may be followed by
operation 214C.

Operation 214B illustrates client device 100 receiving an
indication from the policy server whether the cached objects
are trusted. The instructions may include a risk or a likeli-
hood of having malicious code inserted in the cached

US 9,471,533 Bl

11

objects. The instructions may also authorize client device
100 to use the cached objects when determined to be trusted.
If the cached objects are untrusted, the instructions may
require client device 100 to fetch new objects from second
website 154 or from a trusted source. Operation 216A
illustrates client device 100 determining whether the
received instructions indicate that the cached objects are
trusted. If the cached objects are trusted, operation 216A
may be followed by operation 218A. Otherwise, operation
216A may be followed by operation 218B.

Operation 214C illustrates client device 100 receiving the
policy from the policy server. In such a case, client device
100 may store the policy locally. The policy may be inte-
grated with cache validator 102. Operation 216B illustrates
client device 100 comparing the stored context to the policy.
Operation 216B may be similar to operation 214A. More
particularly, client device 100 may determine whether a
minimum set of requirements that are defined in the policy
are satisfied by the stored context information. If the require-
ments are met, client device 100 may determine that the
stored context and the policy are compatible indicating that
the cached objects are trusted. Otherwise, client device 100
may determine that they are incompatible, indicating that the
cached objects are untrusted. Operation 216B may be fol-
lowed by operation 218A when the cached objects are
trusted. Otherwise, operation 216B may be followed by
operation 218B.

Another example of a system in which the disclosed
techniques may be employed is depicted in FIG. 3. In
particular, FIG. 3 illustrates one example embodiment of a
system for providing server-based verification of cached
objects. In a basic configuration, the system may comprise
some or all elements of the system of FIG. 1 and may
comprise a managed infrastructure 300 that is configured to
control access of a plurality of user devices 350A-C to other
components of managed infrastructure 300. For instance, a
user may direct user device 350A to access data controlled
by managed infrastructure 300, or to connect to a public
server 340 through managed infrastructure 300 to cache
objects from a website 346 hosted on public server 340.

When connected to managed infrastructure 300, user
device 350 A may use cached objects from user cache 354A
and a context 356A to interact with network-based services
internal and external to managed infrastructure 300. User
cache 354A and context 356 A may comprise some or all
elements of web cache 104 and caching context 106 of FIG.
1, respectively. Similarly, user device 350B may also store
user cache 354B and a context 356B.

To control access of user devices 350A-C to components
of managed infrastructure 300, managed infrastructure 300
may comprise a manager device 310 that administers access
to a managed network 320 and to a managed server 330.
Manager device 310 may enable a manager to provide
administrative functions that can include, for example, set-
ting a security layer that authenticates user devices 350A-C,
generating and updating a network access policy 318, and
the like. Network access policy 318 may define rules that
allow user devices 350A-C to connect to managed network
320 and that enable cached objects from user caches 354A
and 354B to be used by applications running on user devices
350A-C. For example, the cached objects from user caches
354A and 354B may be used to interact with an internal
website 336 hosted on managed server 330 and with an
external website to managed infrastructure 300 such as
website 346, depending on network access policy 318.

In an embodiment, managed server 330 may be config-
ured as a cache server that hosts objects in a trusted web

5

10

15

20

25

30

40

45

50

55

60

65

12

cache 338 for replacing the cached objects in user caches
354A and 354B when they are untrusted or otherwise
unusable. For example, when user device 350A connects to
the managed network 320 or connects to website 346 over
managed network 320, particular objects stored in user
cache 354A may be determined to be untrusted. In such a
situation, objects from trusted cache 338 may be sent to user
device 350A to replace the particular objects in user cache
354A. In another example, when user device 350C connects
to website 346 over managed network 320, user device 350C
may not have an object in its cache that is usable with respect
to website 346. In such a situation, a corresponding object
from trusted cache 338 can be sent to user device 350C.

To determine whether an object stored in a cache is
trusted, a context associated with the object may be com-
pared to network access policy 318. In an embodiment,
network access policy 318 can be generated and updated
independently of information available from user devices
350A-C. For example, the manager may define a set of rules
that comply with the overall security requirements of man-
aged network 320. In such a situation, network access policy
318 may comprise a list of trusted sources such as websites,
servers, networks and computing devices. A source may be
added to the list of trusted sources for a number of prede-
termined reasons. For example, a source may be added when
the manager determines that it meets or exceeds the security
requirements. As another example, a source may be added to
the list of trusted sources based on an agreement between the
manager and an administrator of that source. The agreement
may include, for example, a certification by a third party or
by an auditor of the security credentials of the source.

When user device 350A connects to managed network
320, context 356 A may be analyzed with respect to network
access policy 318. The analysis may be performed by
manager device 310. Context 356A may comprise a plurality
of elements such as an identification of one or more of
website 346, public server 340, user device 350A, and a
network over which an object in user cache 354A was
downloaded. To determine that a particular cached object in
user cache 354A is trusted, network access policy 318 may
require a number of conditions from context 356 A to match
a number of sources from the list of trusted sources. For
example, network access policy 318 may require at least one
condition, all conditions, or some subset of conditions in
context 356A to be found on the list of trusted sources. In
another example, network access policy 318 may include a
predefined threshold that is used to determine whether the
cached object is trusted. Manager device 310 may determine
a likelihood of having a trusted object based on the fre-
quency of elements matched between the list of trusted
sources and the context. If the likelihood is larger than the
predefine threshold, manager device 310 may declare that
the cached object is trusted.

Network access policy 318 can also be generated and
updated based on information received from user devices
350A-C. For example, manager device 310 may receive
contexts over time from user devices 350A and 350B, such
as context 356A and 356B. Manager device 310 may ana-
lyze and correlate these contexts to generate a history of the
conditions contained therein. The history may be saved in
network access policy 318. To determine whether a particu-
lar cached object in user cache 354A is trusted, manager
device 310 can compare context 356A to the history. For
instance, the history may indicate that a particular public
network is frequently used in caching untrusted objects.
Network access policy 318 may indicate that such a network
should not be trusted. Thus, when context 356A comprises

US 9,471,533 Bl

13

an identification of this public network, manager device 310
may determine that the cached object is untrusted.

Network access policy 318 can be further generated and
updated based on information received from both the man-
ager and user devices 350A-C. For example, the manager
may identify a particular network that is a likely untrusted
source of untrusted objects whereas the analysis of received
contexts 356A and 356B may indicate that objects cached
within a timeframe from the particular network are actually
tainted. As such, network access policy 318 may be updated
to list the particular network as a potential source of
untrusted objects and to indicate that all objects cached from
the source within the time frame are untrusted.

In addition to receiving contexts 356A and 356B, man-
ager device 310 may also receive the cached objects in user
caches 354A and 354B. The received objects may be ana-
lyzed to update network access policy 318. For example,
manager device 310 may determine that a particular website
is popular among users based on contexts 356 A and 356B.
In that instance, manager device 310 may access cache
objects from the popular website over managed network
320. These objects can be compared to the cached objects in
user cache 354 A by comparing, for example, their hashes to
determine whether there are differences. If differences exist,
manager device 310 may tag the cached objects in user
cache 354A as suspicious and may update network access
policy 318 to indicate that the popular website is suspicious.

Another technique for using hashes of cached objects
includes comparing hashes received from user devices
350A-C. For example, manager device 310 may receive,
from user devices 350A-C, descriptions associated with
content of a particular object and descriptions associated
with networks over which the particular object was cached.
Each of the content descriptions may include a hash of the
content and each of the network descriptions may include an
identifier of the network. To determine whether the particu-
lar object cached at user device 350A is trusted, manager
device 310 may compare the hash of the content received
from user device 350A to the hashes of content received
from user devices 350B-C and may determine that the
particular object is untrusted when there are differences.
Otherwise, manager device 310 may compare the identifier
received from user device 350A to the identifiers received
from user devices 350B-C and may determine that the
particular object is untrusted when the identifier changes.
Otherwise, manager device 310 may receive and compare
context 356A to network access policy 318.

Independent of the technique used to generate and update
network access policy 318, the policy comprises a set of
rules used to determine whether a cached object is trusted or
untrusted. Network access policy 318 also comprises
instructions about a use of the cached object based on
whether it is trusted or not. The instructions may direct a
computing device to use the cached object when trusted or
to flush the cached object when untrusted. To use network
access policy 318, manager server 310 may share it in
various ways with user devices 350A-C.

One way for sharing network access policy 318 with user
devices 350A-C is to push the policy to the devices. For
example, managed network 320 may be associated with a
private network of a company, and user devices 350A-C
may be mobile computing devices associated with employ-
ees of the company, such as laptop computers, tablets, smart
phones and the like. In this example, network access policy
318 may be downloaded to the mobile computing devices
when they are assigned to the employees. When network
access policy 318 is updated, updates to the policy can be

20

25

40

45

55

14

sent to the mobile computing devices. Further, because
network access policy 318 is saved locally on the mobile
computing devices, the verification of whether the cached
object is trusted can be performed locally on the mobile
computing devices. As such, the mobile computing devices
need not transmit contexts to manager device 310 to verify
the cached object.

Another way for providing sharing network access policy
318 includes transmitting the policy to user device 350A
upon detection of a connection between manager device 310
and user device 350A. This transmission may also occur
upon demand. For example, when user device 350A con-
nects to managed network 320, user device 350A may
request and download network access policy 318 from
manager device 310.

Network access policy 318 may also not be provided to
user device 350A. Instead, manager device 310 may receive
and analyze context 356A against network access policy
318, and may accordingly return a service to user device
350A. The service may depend on the rules and the instruc-
tions defined in network access policy 318. When the cached
object is trusted, the service may include, for instance, an
indication that the object is trusted, or an authorization to use
the object within managed infrastructure 300. When the
cached object is untrusted, the service may include, for
instance, an indication that the cached object is untrusted, an
indication of a likelihood that the cached object is untrusted,
instruction not to use the cached object within managed
infrastructure 300, a permission to use the cached object
outside of managed infrastructure 300, instructions to fetch
a new object over a trusted network or from a trusted source.

As described above, the trusted source may be, for
example, managed server 330 that may include trusted cache
338. When the cached object is untrusted, user device 350A
may connect to managed server 330 and retrieve a copy of
the object from trusted cache 338. If the copy is not available
in trusted cache 338, managed server 330 can download it
from a website over managed network 320.

The use of network policy 318 may also not be limited to
manager device 310 and user devices 350A-C. For example,
network access policy 318 may comprise instructions for
reporting a likelihood of tainted objects to third parties. The
third parties may comprise an auditor that assesses web
securities or an administrator of a network over which the
tainted objects were cached. When network access policy
318 indicates that objects cached over a particular network
are tainted, network policy 318 may generate a notification
that identifies the particular network, the likelihood of a
network hacking or a violation of the policy and may direct
manager device 310 to automatically transmit the notifica-
tion to the administrator of the particular network.

FIG. 4 is a flowchart depicting an example embodiment of
a procedure for providing server-based verification of
cached objects. The procedure may be performed by the
system of FIG. 3. Operation 402 illustrates configuring
various components of, for example, managed infrastructure
300. Operation 404 illustrates a verification service, such as
manager device 310, generating a policy, such as network
access policy 318. The policy may include a list of trusted
and untrusted networks associated with managed infrastruc-
ture 300 and may define rules for accessing network-based
resources, such as websites, internal or external to managed
infrastructure 300.

Operation 406A illustrates the verification service deter-
mining whether the policy may be shared with a computing
device associated with managed infrastructure 300. This
determination may be based on various parameters includ-

US 9,471,533 Bl

15

ing, for example, whether the computing device is managed
by the verification service, conditions of a network connec-
tion between the verification service and the computing
device, a configuration of the verification service, and the
like. If the policy is shared, the verification server may push
the policy to the computing device that may use the policy
to locally verify cached objects in its cache as shown in
operation 406B. If the policy is not shared, the verification
services may verify the cached objects on behalf of the
computing device and may return an indication of the
verification to the computing device as shown in operations
406C-412B. Although FIG. 4 illustrates a decision under
operation 406A, one skilled in the art will appreciate that
operation 406 A is optional. For example, one skilled in the
art may implement the verification service to always verify
the cached objects on behalf of the computing device.

Operation 4068 illustrates the verification service trans-
mitting the policy to the computing device. In one example,
the verification service can push the policy or updates
thereto to the computing device when the computing device
is associated with managed infrastructure 300. In another
example, the verification service may transmit relevant
sections of the policy to the computing device based on a
context received from the computing device. Once the
policy is pushed to the computing device, it can be used
locally at the computing device. On the other hand, opera-
tion 406C illustrates the verification service receiving from
the computing device information about its cached objects.
The information may include, for example, a list of the
cached objects and contexts that describe conditions under
which the cached objects were cached at the computing
device.

Operation 408 illustrates the verification service compar-
ing the received information to the policy. For example, to
determine whether a cached object of the list of cached
objects is trusted, the verification service may compare the
cached object’s context to the policy. The context may
identify the computing device, a user of the computing
device, and the network over which the cached object was
downloaded. The policy may weigh these parameters dif-
ferently. For instance, the context is declared to be compat-
ible with the policy when both the computing device and the
user are found or when only the network is identified on the
list of trusted sources. As such, the identity of the network
is accorded a larger weight than the individual identities of
the computing device and the user. The verification service
may also determine a likelihood of the cached object being
untrusted based on, for example, a frequency associated with
occurrences of the parameters on the list of trusted networks.

Operation 410 illustrates the verification service deter-
mining whether the cached object is trusted or untrusted
based on the comparison of the context and the policy. For
example, the cached object is trusted when the context is
compatible with the policy or when the determined likeli-
hood exceeds a predefined threshold. In such a case, opera-
tion 410 may be followed by operation 412A. Otherwise, the
cached object is declared as untrusted and operation 410
may be followed by operation 412B.

Operation 412A illustrates the verification service trans-
mitting instructions to the computing device indicating that
its cached object is trusted. The verification service may also
use the determination that the cached object is trusted as a
factor in authenticating a user of the computing device by,
for example, providing the computing device with access to
the managed network when the object is trusted. The veri-
fication service may further authorize the computing device

10

15

20

25

30

35

40

45

50

55

60

65

16

to use the cached object to interact with network-based
resources over the managed network.

On the other hand, Operation 412B may be performed to
manage the use of the untrusted cached object. When the
cached object is untrusted, the verification service may
indicate to the computing device that its cached object is
untrusted and may execute further actions based on the rules
defined in the policy. For example, the verification service
may deny the computing device from accessing the managed
network or from using the cached object to interact with the
network-based resources over the managed network. Opera-
tion 414 illustrates the verification service analyzing the
context to update the policy. For example, parameters of the
context can be added to the listed of trusted or untrusted
networks based on whether the cached object was found to
be trusted or untrusted.

Another example of a system in which the disclosed
techniques may be employed is depicted in FIG. 5. In
particular, FIG. 5 illustrates one example embodiment of a
system providing verification of cached objects as a service.
The system may implement various policy-based techniques
on a user device or on a policy server for preventing the
caching of tainted objects and for verifying cached objects.
In a basic configuration, the system of FIG. 5 may comprise
some or all elements of the system of FIG. 3 and may
comprise a user device 500 configured to access network-
based resources, such as websites 522A-C hosted on web
servers 520A-C, over a connection facilitated by a network
510A. User device 500 may cache objects from theses
network-based resources, shown as cache 504, and may
generate context 506 describing conditions of caching the
objects and information about the cached objects.

The system may also include a trusted server 530 con-
figured to verify the cached objects for user device 500 and
cached objects of other computing devices. For each of the
devices, trusted server 530 may use an application program
interface (API) to customize and configure the verification
as a service based on, for example, an account associated
with the device or a user of the device. For instance, the
verification service provided to a computing device may
include pushing or otherwise transmitting policy 538 to the
computing device. In comparison, the verification service
provided to user device 500 may be different and may
include, an authorization to cache objects, a determination
whether the cached objects in cache 504 are trusted and a
transmission of new objects when the cached objects are
found untrusted as described herein below.

In order to determine whether an object is trusted before
caching the object in cache 504, trusted server 530 may
compare policy 538 can to a current context of user device
500 prior to the caching. The current context may describe
conditions of a current connection between user device 500
and a network-based resource from which the object is to be
cached. If the conditions of the current context meet policy
538, user device 500 is allowed to cache the objects in cache
504. Otherwise, user device 500 is prohibited from caching
the objects. This pre-caching verification may also be per-
formed by user device 500 if policy 538 is stored locally on
user device 500. For example, policy 538 may indicate that
network 510A is a trusted network, web server 520A is a
trusted web server, and web server 520B is an untrusted web
server. Thus, when user device 500 connects to web server
520A over network 510A and its browser connects to
website 522A, the browser is permitted to cache objects of
website 522A in cache 504. That is because the current
context of user device 500 comprises a trusted network and
a trusted web server. On the other hand, when user device

US 9,471,533 Bl

17
500 connects to web server 520B over network 510A and the
browser connects to website 522B, the browser is not
authorized to cache objects of website 522B in cache 504.
That is because the current context of user device 500
comprises an untrusted web server.

On the other hand, to verify whether an object that has
already been cached in cache 504 is trusted, trusted server
530 may compare the context associated with the cached
object, such as context 506, to policy 538. This type of
verification can be performed in real-time, periodically, or at
time intervals. In an example, user device 500 may be
configured to automatically request the verification service
from trusted server 530 when the object is cached. In another
example, user device 500 can be configured to periodically
request the verification service from trusted server 530 to
verify the cached object. Similarly, the user account man-
aged at trusted server 530 can be configured to periodically
trigger trusted server 530 to verify the cached object in cache
504. If context 506 has not already been received by trusted
server 530 prior to the trigger, trusted server 530 may
automatically request context 506 from user device 500. In
yet another example, trusted server 530 may request user
device 500 at time intervals to verify the cached object and
to transmit a report of the verification to trusted server 530.
If user device 500 fails to verify the cached object, trusted
server 530 may execute additional actions such as requesting
user device 500 to transmit context 506 or limiting access of
user device 500 to a managed infrastructure.

A time interval associated with the service for veritying
cached objects in cache 504 can be derived from parameters
associated with user device 500 and trusted server 530. The
parameters may comprise a time of day, an identification of
a network, an available bandwidth, a data cost, an idle
resource at user device 500, a geographic location of user
device 500, an available resource at trusted server 530, and
the like. The parameters may also be associated with a
change in a network connection between user device 500
and trusted server 530. The change may be associated with
a transition from a metered network (e.g., cellular) to an
unmetered network (e.g., WiFi), a change of network con-
nectivity, the reaching of a particular time window, a change
in network usage rates (e.g., rates of an off peak period and
of a peak period), and the like.

For example, the browser at user device 500 may be
configured to transmit context 506 to trusted server 530
every night between 12:00 am and 4:00 am. The user
account may be configured to trigger trusted server 530 to
request context 506 from user device 500 when trusted
server 530 detects that a specific network, such as network
510B, connects user device 500 thereto. User device 500
may transmit context 506 to trusted server 530 when a
bandwidth greater than, for example, 10 Mbps is detected by
user device 500. If user device 500 is associated with a
cellular plan that has a data size limit and if the limit is
reached, user device 500 may transmit context 506 to trusted
server 530 only when a WiFi network is detected in order to
reduce the data transmission cost. The time interval can be
also set such that, when user device 500 determines that no
data is queued for transmission, user device 500 may trans-
mit context 506 to trusted server 530. Further, user device
500 can be configured to transmit context 506 when user
device 500 detects that it is within a certain range of a
predefined access point. Trusted server 530 may also detect
that a resource thereat is available and, may allocate that
resource to user device 500, and may instruct user device

10

15

20

25

30

35

40

45

50

55

60

65

18

500 to transmit context 506. These various examples are
merely illustrative and other implementations may be uti-
lized.

FIG. 6 is a flowchart depicting an example embodiment of
aprocedure for verifying an object before caching it in cache
504 of FIG. 5. The procedure may be performed by the
system of FIG. 5. Operation 602 illustrates a computing
device, such as user device 500, receiving a policy or
updates to the policy from a trusted source, such as trusted
server 530. Operation 604 illustrates the computing device
establishing a connection to a server over a network and
accessing a network-based resource, e.g., a website hosted
on the server. The computing device may determine a
parameter associated with the connection such as an identity
of the network, the server, or the website. Operation 606
illustrates the computing device comparing the determined
parameter to the received policy. The comparison may
comprise, for example, determining whether the parameter
matches a trusted condition listed in the policy. If there is a
match, the parameter is tagged as being compliant with the
policy. Otherwise, the parameter is tagged as being non-
compliant. Operation 608 illustrates the browser caching an
object associated with the website when the parameter is
tagged as compliant. When the parameter is tagged as
non-compliant, the browser avoids caching the object.

FIG. 7 is a flowchart depicting an example embodiment of
a procedure for verifying an object that has already been
cached in cache 504 of FIG. 5. The procedure may be
performed by the computing device of FIG. 6. Operation
702 illustrates the computing device generating a context
describing the parameters associated with the connection of
the computing device to the network-based resource from
which the object is cached. Operation 704 illustrates the
computing device detecting a condition associated with
transmitting data to the trusted source. The condition may be
a time-based, connection-based, resource-based, or account-
based condition.

Operation 706 illustrates the computing device determin-
ing that the condition is met and transmitting the context to
the trusted source. Operation 706 may be followed by
operation 708 A, operation 708B, or operation 708C depend-
ing on an account associated with the computing device.
Operation 708A illustrates the computing device receiving
verification whether the cached object is trusted from the
trusted source. The verification may comprise an indication
whether the cached object is trusted or untrusted and other
information and actions related to the indication. Operation
710A illustrates the computing device deleting and replacing
the cached object with a new object when the cached object
is found untrusted. The computing device may also use the
cached object when it is found to be trusted.

Operation 708B illustrates the computing device receiv-
ing the policy or updates to the policy from the trusted
source. The policy may comprise rules for validating the
cached object based on the context associated with the
cached object. Operation 710B illustrates the computing
device comparing the context to the policy. If the context is
compliant with the policy, the cached object may be found
to be trusted. Otherwise, the cached object may be found to
be untrusted.

Operation 708C illustrates the computing device trans-
mitting the cached object to the trusted source. The trusted
source may analyze the cached object to determine whether
the cached object contains tainted code. Operation 710C
illustrates the computing device receiving a trusted object
from the trusted source. For example, the trusted source may
replace an untrusted cached object with a trusted object and

US 9,471,533 Bl

19

transmit the trusted object to the computing device. The
computing device may use the trusted object to interact with
the network-based resource.

FIG. 8 is a flowchart depicting another example embodi-
ment of a procedure for verifying an object that has already
been cached in cache 504 of FIG. 5. The procedure may be
performed by the trusted source of FIG. 6. Operation 802
illustrates the trusted source generating and updating the
policy used to verify whether the cached object is trusted.
Operation 802 may be followed by Operation 804 or Opera-
tion 812 depending on whether the policy is associated with
the computing device or with a network that the trusted
source manages.

Operation 804 illustrates the trusted source associating the
policy with the computing device based on, for example, an
account associated with the computing device and managed
at the trusted source. Operation 806 illustrates the trusted
source determining a condition associated with transmitting
data to the computing device and initiating the verification
of the cached object based on the determined condition.
Operation 808 illustrates the trusted source receiving the
context from the computing device when the verification is
initiated. Operation 810 illustrates the trusted source return-
ing a service associated with the verification of the cached
object to the computing device based on a comparison of the
received context and the policy. The service may include, for
example, instructions to the computing device to retrieve a
new object when the cached object is untrusted.

When the policy is associated with the network that the
trusted source manages, Operation 812 illustrates the trusted
source associating the policy with the network and enforcing
the policy against the computing device when connected to
the network. Operation 814 illustrates the server transmit-
ting relevant sections of the policy to the computing device
upon detecting the connection of the computing device to
the network. Operation 816 illustrates the server enforcing
the policy against a use of the cached object by the com-
puting device to access and interact with the network-based
resource over the network. For example, the trusted source
may require the computing device to provide a confirmation
that the cached object was verified based on the policy.

In addition to validating an object in a cache of a
computing device based on attributes associated with the
object and to verifying whether the object is trusted based on
a context associated with the object and a policy as described
above, a service can be configured to provide such validation
and verification while optimizing data and bandwidth usages
at the computing device. For example, the computing device
may maintain a summary of cached objects and of attributes
associated with the cached objects. The computing device
may use the summary to manage the service based on
bandwidth requirements. For instance, when the summary
indicates that a cached object is no longer usable based on
its freshness attribute, the computing device may determine
a favorable network condition and may refresh the cached
object based on that condition. This and other techniques for
optimizing data and bandwidth usages are described in
FIGS. 9-12. More particularly, FIG. 9 illustrates one
example embodiment of a system for optimizing device-
based services.

The system of FIG. 9 may comprise a client device 900
in communication with a server 930 over a first network 910.
Client device 900 may be configured to manage a service for
validating objects in its cache based on available resources
and infrastructure. More particularly, client device 900 may
store in its cache objects from a network-based resource,
such as a website 932 hosted on server 930, over first

10

15

20

25

30

35

40

45

50

55

60

65

20

network 910. As such, the cache may comprise objects
associated with various attributes such as freshness attri-
butes that define a period of time in which the objects are
usable.

To maintain the usability of the objects, client device 900
may operate an application, such as a browser, configured to
validate the objects. In an example, the application may
access the cache of client device 910 and maintain a list of
the objects therein. The list may include descriptions or
hashes of the objects, the attributes, and addresses of net-
work-based resources from which the objects were cached.
To optimize the data and bandwidth usages, the application
may also include rules that define parameters for validating
the objects. The rules may be time and resource based. For
example, time-based rules may require the application to
validate only objects in the cache that have expired or that
will expire in a certain timeframe, such as in a day, a week,
and the like. These rules may also define a frequency and a
time of day when the validation can occur to minimize
network loads. For example, the application may be config-
ured to periodically refresh or replace unusable objects
between midnight and 2:00 am over first network 910.

The resource-based rules may relate to the underlying
infrastructure of the system of FIG. 9. More particularly,
these rules may depend on the resources available at client
device 900 and on the connection between client device 900
and server 930. By way of example, client device 900 may
be associated with a data plan that limits the amount of the
data that client device 900 may receive or send over first
network 910 on a monthly basis. This data plan may be an
input to the resource-based rules that may allocate the
validation of the cached objects accordingly. For example,
when the application detects that the limit has been reached
for a certain month, the application may not refresh the
cached objects over first network 910. Instead, the applica-
tion may utilize a second network 920 to refresh the cached
objects or may delay the refreshing over first network 910
until the next month. On the other hand, if the application
detects that the limit is not reached but that the data plan is
about to expire for that certain month, the application may
refresh the cached objects over first network 910 even when
the cached objects have not expired yet. Other device-based
rules may also be implemented. For instance, when client
device 900 is performing a function that is independent of
refreshing the cached objects, such as placing a voice call to
another device, client device 900 may determine an impact
of performing the refresh on the quality of service associated
with this function and may reschedule the refresh based on
the impact.

Similarly to the device-based rules, connection-based
rules may be configured to optimize bandwidth, cost, and
security. For example, these rules may dictate a certain
network throughput to allow a fast validation. As such, when
first network 910 does not meet this throughput requirement
because, for instance, it is a third generation (3G) cellular
network, the application may validate the cached objects
when a faster network is detected, such as second network
920 that may be a fourth generation (4G) cellular network.
In another example, the rules may require the use of an
unmetered network to minimize the data cost associated
with the validation of the cached objects. For example, when
first network 910 is a cellular network and second network
920 is a WiFi network, the application may not validate the
cached objects until client device 900 connects to second
network 920. In yet another example, the rules may provide
a secure validation by requiring a trusted network over
which the validation of the cached objects may be per-

US 9,471,533 Bl

21

formed. For instance, when first network 910 is a public
network and second network 920 is a private network, the
application may refresh the cached objects only when client
device 900 is connected second network 920.

To illustrate this optimization associated with the valida-
tion of the cached object, FIG. 10 describes one example
embodiment of a procedure that can be performed by client
device 900 of FIG. 9. Operation 1002 illustrates client
device 900 connecting to a plurality of servers, including
server 930, over first network 910 and caching objects from
a plurality of network-based resources, including website
932. Operation 1004 illustrates client device 900 generating
a summary of the objects contained in its cache. Operation
1006 illustrates client device 900 determining that a subset
of the objects needs to be validated based on attributes
included in the summary. Operation 1008 illustrates client
device 900 determining whether time and resource based
rules are satisfied to validate the subset of objects. This
determination may be based on information that includes,
for example, a time of day, available resources at client
device 900, and the network that client device 900 is
connected to. Operation 1010 illustrates client device 900
refreshing the subset of objects from the same or different
network-based resources when the time and resource based
rules are met. For example, client device 900 may retrieve
the addresses of the network-based resources from the
summary, connect to these network-based resources, check
whether the objects are still valid or whether updates thereto
are needed, download any needed new objects or updates to
the cache of client device 900, and update the attributes and
the summary.

The validation of cached objects may be further optimized
by using an intermediary server located between client
device 900 and server 930. More particularly, the interme-
diary server may be a cache server, such as a proxy or CDN
server, may serve cached objects to client device 900, and
may manage some or all aspects of the cached objects of
client device 900. Such architecture may reduce the cost,
resource, and bandwidth usage and may improve the secu-
rity of client device 900. For example, instead of validating
the cached objects by committing various resources and
using bandwidth to connect to a plurality of network-based
resources, client device 900 needs only to request the
validation from the intermediary server. In turn, the inter-
mediary server may connect to the plurality of network-
based resources or to other network-based resources to
refresh the cached objects, and return the refreshed objects
to client device 900. FIG. 11 provides one example embodi-
ment of a system for providing server-based validation of the
cached objects that takes advantage of this architecture. As
shown in FIG. 11, the intermediary server is configured as a
cache server 1150 that may cache and serve objects to client
device 900 over first network 910 or second network 920.
Client device 900 may, in turn, cache the served objects in
its cache.

More particularly, cache server 1150 may connect to
server 930 over a third network 1160 to cache objects from
a network-based resource, such as website 932. The cached
objects may be transmitted from cache server 150 to client
device 900 that may then display website 932. Server 1150
may be further configured to monitor attributes associated of
the cached objects and to validate the cached objects based
on the attributes. The validated objects may be transmitted
to client device 900 depending on time and resource based
rules similar to what is described herein above. The various
features of the system of FIG. 11 are described in more detail
herein below.

10

15

20

25

30

35

40

45

50

55

60

65

22

In an example, cache server 1150 may be associated with
a network-based service and may be configured to support a
split-architecture that distributes browser functionalities
(e.g. connecting to website 932, retrieving HTML and
JavaScript codes, processing the retrieved codes, and ren-
dering website 932) between cache server 1150 and the
browser of client device 900. This functionality distribution
may decrease the time it takes to load and render network-
based resources, e.g., websites, and may reduce resource and
power consumption at client device 900. Further, the split-
architecture may be implemented on the server side, for
example, as a virtual machine that is instantiated and oper-
ated on cache server 1150 and that enables all the browser
functionalities. On the device side, the browser of client
device 900 may embed a browser engine, such WebKit, to
render the network-based resources and may utilize a net-
working protocol, such as HTTP 2.0 and SPDY, to reduce
load time and improve security. When the browser requests
objects of website 932 and other network-based resources,
the browser may decide which functionalities are to be
operated locally on client device 900 and which are to be
operated remotely on the virtual machine hosted on cache
server 1150. In turn, cache server 1150 may funnel the
requests, connect to website 932 and the other network-
based resources, retrieve the requested objects, and process
the objects based on the functionality distribution. Cache
server 1150 may also cache the retrieved objects. The cached
objects can be pushed to client device 900, transmitted to
client device 900 upon request, or made available by, for
example, storing the cached objects on a network-based
resource, such as a webpage hosted on cache server 1150,
and sending a corresponding link to client device 900.

To validate the cached of client device 900 based on the
intermediary server architecture of FIG. 11, various tech-
niques may be implemented and may or may not include
requests from client device 900 to cache server 1150 for
validating the cached objects. In a first technique, client
device 900 may request cache server 1150 to validate the
cached objects in client device 900’s cache. For example,
the application operated on client device 900 may generate
a summary associated with the cached objects in its cache as
previously described. The application may include data
based on the summary in a request sent to cache server 1150
for validating the cached objects. The request may be
customized to reduce bandwidth usage by taking advantage
of the cache that is maintained at cache server 1150. For
example, the request need not include the cached objects to
be validated. Instead, the request may include the summary
or information based on the summary. The information may
include a description, checksum, or hash of client device
900’s cached objects that need to be validated. In another
example, the application may generate a hash of the sum-
mary or of client device 900’s cache and may include this
information in the request. Further, depending on time and
resource based rules associated with client device 900 and
with the connection to cache server 1150, the request may be
transmitted to cache server 1150.

In turn, cache server 1150 may receive the request and
determine the cached objects that need to be validated and
the network-based resources that can be used to refresh the
cached objects. This determination may depend on the data
included in the request. For example, when the request
identifies the cached objects, cache server 1150 may update
a list that tracks objects that need to be validated with this
information. In another example, when the request includes
a hash of the cache of client device 900, cache server 1150
may process the hash, identify the associated objects, access

US 9,471,533 Bl

23

its cache, determine which objects are expiring and the
network-based resources from which the expiring objects
can be refreshed, and add this information to the list.

Another technique for validating the objects does not
involve a request from client device 900 but, instead, takes
advantage of the cache of cache server 1150. Because the
cached objects of client device 900°s cache are also cached
at and served from cache server 1150 to client device 900,
cache server 1150 may monitor and determine the objects
that have been transmitted to client device 900 and that need
to be validated. This monitoring may be based on, for
example, the freshness attributed of the transmitted objects
and may include maintaining a summary similar to the
summary generated by the application of client device 900.
When an object needs to be refreshed, cache server 1150
may determine a network-based resource that can be used to
refresh the object and may add an identifier of the object and
of the network-based resource to the list that tracks the
objects that need to be validated.

Regardless of which of the two techniques is used to
initiate the validation of the objects, cache server 1150 may
validate the objects identified on the list by connecting to the
associated network-based resources, checking whether the
objects are still valid or whether updates thereto are
required, downloading new objects or updates to the cache
of cache server 1150, and updating any summary of the
cache. A service may be returned to client device 900 based
on the validated objects and depending on the time and
resource based rules. The service may include transmitting
the validated objects to client device 900. The transmission
may include pushing the validated objects to client device
900 or sending a link to a webpage hosted on cache server
1150 and that includes the validated objects. In this latter
example, client device 900 may retrieve the validated
objects from the webpage by following the link. Addition-
ally, to further save bandwidth, when an object has expired
but is determined to still be valid, cache server 1150 need not
transmit the updated object to client device 900. Instead,
cache server 1150 may transmit instructions to client device
900 to update the freshness attribute of the object.

In yet another technique for validating the cached objects,
server 1150 may not refresh the objects. Instead, cache
server 1150 may transmit the list that tracks the objects that
need to be validated to client device 900 depending on the
time and resource based rules. In turn, client device 900 may
process the information from the list, connect to the listed
network-based resources, and refresh the associated objects
from these network-based resources.

In addition to enabling the validation of the cached
objects based on the time and resource based rules, other
rules may be implemented. For example, cache server 1150
may maintain accounts associated with client device 900 and
other devices. These accounts may mandate the frequency,
the time, and the rules for validating the cached objects of
each client device. For instance, client device 900 may be
associated with an account that requires cache server 1150 to
validate objects cached from website 932 on a daily basis
and objects cached from another website on a monthly basis.
These account rules may be coupled with time-based rules
that require the validation of the objects to occur at 10:00
pm. As such, cache server 1150 may transmit validated
objects associated with website 932 to client device on a
daily basis at 10:00 pm and validated objects associated with
the other website on the first Monday of each month at 10:00
pm.

To illustrate the bandwidth optimization associated with
the validation of the cached objects when an intermediary

10

15

20

25

30

35

40

45

50

55

60

65

24

server is used, FIG. 12 describes one example embodiment
of a procedure that can be distributed between cache server
1150 and client device 900 of FIG. 11. Operation 1202
illustrates cache server 1150 connecting to network-based
resources, including website 932, over third network 1160
and caching objects from these network-based resources.
The cached objects can be served to client device 900.
Operation 1204 illustrates cache server 1150 validating the
cached objects. This validation may be based on a request
received from client device 900 or may be based on moni-
toring attributes of the objects served to client device 900
and may take into account time, resource, and account based
rules. The validation may also include determining which
objects from the cache of cache server 1150 are no longer
usable and connecting to network-based resources to refresh
the determined objects. Operation 1206 illustrates cache
server 1150 updating its cache with validated objects and
updating a summary related to the cache with information
about the validated objects. Operation 1208 illustrates cache
server 1150 returning a service based on the validated
objects to client device 900. The returned service may
include transmitting the validated objects, a link to a net-
work-based resource from which client device 900 may
retrieve the validated objects, or information to update
attributes of the cached objects cached of client device 900°s
cache. This transmission may also take into account the
time, resource, and account based rules. As such, cache
server 1150 may be configured to act as a single point in the
system that client device 900 interfaces with to validate the
cached objects of client device 900’s cache.

It should be appreciated that the network topologies
illustrated in the figures have been greatly simplified and
that many more networks and networking devices may be
utilized to interconnect the various computing systems dis-
closed herein. These network topologies and devices should
be apparent to those skilled in the art.

It should also be appreciated that the systems in the
figures are merely illustrative and that other implementa-
tions might be used. Additionally, it should be appreciated
that the functionality disclosed herein might be implemented
in software, hardware, or a combination of software and
hardware. Other implementations should be apparent to
those skilled in the art. It should also be appreciated that a
server, gateway, or other computing device may comprise
any combination of hardware or software that can interact
and perform the described types of functionality, including
without limitation desktop or other computers, database
servers, network storage devices and other network devices,
PDAs, tablets, cellphones, wireless phones, pagers, elec-
tronic organizers, Internet appliances, television-based sys-
tems (e.g., using set top boxes and/or personal/digital video
recorders), and various other consumer products that include
appropriate communication capabilities. In addition, the
functionality provided by the illustrated modules may in
some embodiments be combined in fewer modules or dis-
tributed in additional modules. Similarly, in some embodi-
ments the functionality of some of the illustrated modules
may not be provided and/or other additional functionality
may be available.

Each of the operations, processes, methods, and algo-
rithms described in the preceding sections may be embodied
in, and fully or partially automated by, code modules
executed by one or more computers or computer processors.
The code modules may be stored on any type of non-
transitory computer-readable medium or computer storage
device, such as hard drives, solid state memory, optical disc,
and/or the like. The processes and algorithms may be

US 9,471,533 Bl

25
implemented partially or wholly in application-specific cir-
cuitry. The results of the disclosed processes and process
steps may be stored, persistently or otherwise, in any type of
non-transitory computer storage such as, e.g., volatile or
non-volatile storage.

The various features and processes described above may
be used independently of one another, or may be combined
in various ways. All possible combinations and sub-combi-
nations are intended to fall within the scope of this disclo-
sure. In addition, certain method or process blocks may be
omitted in some implementations. The methods and pro-
cesses described herein are also not limited to any particular
sequence, and the blocks or states relating thereto can be
performed in other sequences that are appropriate. For
example, described blocks or states may be performed in an
order other than that specifically disclosed, or multiple
blocks or states may be combined in a single block or state.
The example blocks or states may be performed in serial, in
parallel, or in some other manner. Blocks or states may be
added to or removed from the disclosed example embodi-
ments. The example systems and components described
herein may be configured differently than described. For
example, elements may be added to, removed from, or
rearranged compared to the disclosed example embodi-
ments.

It will also be appreciated that various items are illustrated
as being stored in memory or on storage while being used,
and that these items or portions of thereof may be transferred
between memory and other storage devices for purposes of
memory management and data integrity. Alternatively, in
other embodiments some or all of the software modules
and/or systems may execute in memory on another device
and communicate with the illustrated computing systems via
inter-computer communication. Furthermore, in some
embodiments, some or all of the systems and/or modules
may be implemented or provided in other ways, such as at
least partially in firmware and/or hardware, including, but
not limited to, one or more application-specific integrated
circuits (ASICs), standard integrated circuits, controllers
(e.g., by executing appropriate instructions, and including
microcontrollers and/or embedded controllers), field-pro-
grammable gate arrays (FPGAs), complex programmable
logic devices (CPLDs), etc. Some or all of the modules,
systems and data structures may also be stored (e.g., as
software instructions or structured data) on a computer-
readable medium, such as a hard disk, a memory, a network,
or a portable media article to be read by an appropriate drive
or via an appropriate connection. The systems, modules and
data structures may also be transmitted as generated data
signals (e.g., as part of a carrier wave or other analog or
digital propagated signal) on a variety of computer-readable
transmission media, including wireless-based and wired/
cable-based media, and may take a variety of forms (e.g., as
part of a single or multiplexed analog signal, or as multiple
discrete digital packets or frames). Such computer program
products may also take other forms in other embodiments.
Accordingly, the present invention may be practiced with
other computer system configurations.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements, and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required
for one or more embodiments or that one or more embodi-

113

25

40

45

55

26

ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having,” and the like are synonymous and are used
inclusively, in an open-ended fashion, and do not exclude
additional elements, features, acts, operations, and so forth.
Also, the term “or” is used in its inclusive sense (and not in
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements in the list.

While certain example embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inventions
disclosed herein. Thus, nothing in the foregoing description
is intended to imply that any particular feature, character-
istic, step, module, or block is necessary or indispensable.
Indeed, the novel methods and systems described herein
may be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the methods and systems described herein may be made
without departing from the spirit of the inventions disclosed
herein. The accompanying claims and their equivalents are
intended to cover such forms or modifications as would fall
within the scope and spirit of certain of the inventions
disclosed herein.

What is claimed is:

1. A method of using a browser cache when accessing a
first server node by way of at least two different networks,
the method comprising:

storing, in a cache accessible by a browser, an object

received in connection with content received from a
website, the object received via a first network;
generating data associated with the object, the data being
indicative of attributes of the first network;
maintaining the data indicative of the attributes of the first
network associated with the object;
determining that the data indicative of attributes of the
first network meets at least one condition for using the
object to interact with content via a second network;
and

using the object to interact with content accessed over the

second network based at least in part on the determi-
nation.

2. The method of claim 1 further comprising:

determining that the object is untrusted when the data

indicative of the attributes of the first network fails to
meet the at least one condition.

3. The method of claim 1, wherein the data indicative of
the attributes of the first network comprises metadata,
wherein the metadata indicates that the object was received
via the first network.

4. The method of claim 3, wherein the metadata comprises
at least one of an identifier of the first network, a security
level associated with the first network, an authentication
method for connecting to the first network, geographical
information associated with the first network, a time when
the website was accessed via the first network, an address of
the website, a certificate presented by the web site, an
address of a gateway used in accessing the web site, trace
route information associated with accessing the website,
latency information associated with accessing the website,
or information associated with an author of the object.

5. A non-transitory computer-readable storage medium
bearing instructions for using cached objects that, upon
execution on a computing node, cause the computing node
to at least:

US 9,471,533 Bl

27

cache data associated with a first network;
associate with the cached data information related to the
first network; and
determine whether the cached data can be used over a
second network, the determination being based at least
in part on the associated information and a policy for
using cached data over the second network.
6. The non-transitory computer-readable storage medium
of claim 5, wherein the cached data is used by a browser
operating on the computing node in connection with the
second network.
7. The non-transitory computer-readable storage medium
of claim 5 further comprising instructions that, upon execu-
tion on the computing node, cause the computing node to
invalidate the cached data for use in connection to a net-
work-based resource when accessed from the second net-
work.
8. The non-transitory computer-readable storage medium
of claim 5, wherein the cached data comprises a library for
interacting with a network-based resource, and wherein the
instructions to determine whether the cached data can be
used over the second network comprise instructions to:
determine that the library is trusted based at least in part
on a comparison between the associated information
and the policy; and
execute the library when interacting with the network-
based resource over the second network.
9. The non-transitory computer-readable storage medium
of claim 5, wherein the associated information comprises a
description of the first network and an address where the
cached data was obtained from.
10. The non-transitory computer-readable storage
medium of claim 9, wherein the description of the first
network comprises a service set identifier of the first net-
work.
11. The non-transitory computer-readable storage
medium of claim 9, wherein the address comprises a uni-
form resource locator of a web site from where the cached
data was obtained.
12. A computing device for using a cache, the computing
device comprising:
a memory bearing instructions that, upon execution on the
computing device, cause the computing device to at
least:
connect to a network-based resource over a first net-
work;

download at least one object associated with accessing
network-based content from the network-based
resource;

associate information related to the at least one object
with information related to the first network; and

determine whether to reuse the at least one object when
accessing network-based content over a second net-
work, the determining being based at least in part on
the associated information and a requirement related
to the second network.

13. The computing device of claim 12, wherein the first
network is determined to be an insecure network, and
wherein the second network is determined to be a secure
network.

14. The computing device of claim 13, wherein the first
network is determined to be an insecure network when the
first network is a public network, and wherein the second
network is determined to be a secure network when the
second network is a private network.

10

15

20

25

30

35

40

45

50

55

60

28

15. The computing device of claim 13, wherein the second
network is accessed via a virtual private network.
16. The computing device of claim 12, wherein the object
is a library.
17. The computing device of claim 12, wherein the
associated information comprises metadata, wherein the
metadata comprises a description of a connection to the
network-based resource via the first network, and wherein
the description comprises a context associated with the
connection.
18. The computing device of claim 17, wherein the
metadata is stored in a web cache.
19. The computing device of claim 17, wherein the
context comprises information associated with the first net-
work, and wherein the information comprises an identifier of
the first network.
20. The computing device of claim 17, wherein the
context comprises information associated with the network-
based resource, and wherein the information comprises an
address of the network-based resource.
21. The computing device of claim 17, wherein the
context comprises any of a security level associated with the
first network, an authentication method for connecting to the
first network, geographical information associated with the
first network, a time when the network-based resource was
accessed via the first network, an address of the network-
based resource, a certificate presented by the network-based
resource, an address of a gateway used in accessing the
network-based resource, trace route information associated
with accessing the network-based resource, or latency infor-
mation associated with accessing the network-based
resource.
22. A computing node comprising:
a memory bearing instructions that, upon execution on the
computing node, cause the computing node to at least:

receive, from a client device, information associated with
an object in a cache of the client device, the information
being indicative of a network over which the object was
obtained;

determine whether the object is authorized to be used to

access network-based content based at least in part on
the information indicative of the network over which
the object was obtained; and

provide a response based at least in part on the determi-

nation to the client device.

23. The computing node of claim 22, wherein the cache
is a cache for a browser or an application.

24. The computing node of claim 22, wherein the infor-
mation includes a hash of the object.

25. The computing node of claim 22, wherein the infor-
mation identifies a network that was used by the client
device to obtain the object.

26. The computing node of claim 22, wherein in response
to determining that the object is not authorized to be used to
access the network-based content providing a response to
invalidate the object to the client device.

27. The computing node of claim 22, wherein in response
to determining that the object is authorized to be used to
access the network-based content providing a response
authorizing the client device to use the object to access the
network-based content.

28. The computing node of claim 22, wherein the infor-
mation associated with the object comprises annotations
added by a user of the client device.

#* #* #* #* #*

